

Advance Your Lubricants and Coatings with the "Next Generation" of Fluoropolymer Additives....

In every instance, CERFLON® delivers superior performance when compared to PTFE, Graphite, Molybdenum Disulfide (MoS₂) and Boron Nitride at no additional cost. In fact, in most cases it costs less!

Solid Lubricant	Four Ball Wear Scar, mm (ASTM D-4172)		Four Ball Extreme Pressure (ASTM D-2783)		Falex Pin & Vee Block		
All dispersions were diluted to 1% solids in 150SN mineral oil	15 kg	40 kg	Weld Load, kg	Load Wear Index	Wear (ASTM D-2670) Number of teeth	Extreme Pressure (ASTM D-3233) Failure Load, lb.	Kinetic Friction Coefficient (Falex Method
Reference 150SN mineral oil. No Solid Lubricants	0.678	1.060	126	17.2	Failed 350 lb. break- in load @ 1-2 min. into test	750	0.159
PTFE in 150 SN mineral oil	0.678	0.890	200	27.6	10	4250	0.094
MoS ₂ in 150SN mineral oil	0.630	0.805	250	24.3	8	4375	0.114
Graphite in 150SN mineral oil	0.675	0.855	160	18.7	78	1250	0.123
Boron Nitride in 150SN mineral oil	0.580	0.760	200	25.9	9	4500	0.105
Cerflon® in 150SN mineral oil	NA	0.74	400	38.4	6	4500	0.092

Comparison of Solid Lubricants

This comparison of liquid solid lubricants is shown as standard ASTM measurement data. Information presented on this table was generated by a third party and run in strict compliance with ASTM standards, with no modifications in test procedures However, conditions and methods of use, beyond our control, may modify results. Before adopting any products for commercial use, the user should confirm their suitability in their specific formulation.

CERFLON® is a registered trademark of Ceramic Reinforced Technologies, LLC.